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ABSTRACT

The propagation of cylindrical dieleutric waveguide

modes near cut-off and far from cut-off are considered. The

relative amounts of Ez and Hz , and the transverse components

of the fiel are determined for both sets of hybrid modes.

With the radial dependence of the z-.coponents of the field in

the central dielectric given byJn(ur/a), the transve:se

components far from cut-off are given by J _ (ur/a), where u is

a parametex found from the boundary conditions and which fixes

the scale of the Bessel function relative to the boundary r=a.

The two %alues n+l and n-i correspond to the two sets of modes.

The designation of the hybrid modes are discussed. Field plots

for the lower order modes are given.
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LIST OF ILLUSTRATIONS

Figure 1 Construction to show the equivalence of the waveguide condition

that at cut-off vph = c/n2 with the geometrical optics

conditions that propagation occurs only if the angle of

incidence of the wave on the fiber wall exceeds the critical

angle for total internal reflection. The wave normal is

given by p. S1 and S2 are two equiphase surfaces

separated by V/nl, and X g is the guide wavelength.

Figure 2 Typical curves of the frequencyYversus 1/'Ag for mode

propagation in a dielectric waveguide. Each mode iR

represented by a line which is confined to the region

between the lines whose slopes are c/n2 and c/n1 . At

t1 e frequency ' the TE01 mode has a 9;:ide wavelength

of Xg , phase velocity Vph and group velocity v-group.

Figure 3 Field plot in the core for the TE02 mode far from cut-off

and for a small difference in indices of refraction of

the core and cladding.

Figure 4 Field plot in the core for the .E12 mode far from cut-off

and for a small difference in indices of refraction of the

core and cladding.

Figure 5 Field plot in the core for the EH 1 mode far from cut-off

and for a small difference in indices of refractior of the

core and cladding.

Figure 6 Field plot in the core for the HE21 mode far from cut-off

and for a small difference in indices of refraction of the

core and cladding.



I. INTRODUCTION

In a light pipe electromagnetic energy is propagated

down the pipe by reflection from the walls of the structure.

If the transverse dimensions are comparable to the wavelength of

the light, only certain field distributions, or modes, will

satisfy Maxwell's equations and the boundary conditions. In

this case the light pipe is more app:opriately considered as

a waveguide. Even in very large structures there are waveguide

modes, but there are so many of them, their number increasing

as the area, that in most cases a geometrical optics

description is more fruitful.

Waveguides were first dealt with by Lord Rayleigh.
1

Later the dielectric waveguide was investigated theoretically

by Hondros and Debye2 and experimentally by Schriever.
3

The distinction between metallic and dielectric

waveguides is in the reflection mechanism responsible for

confining the energy. The metallic guide does so by reflection

from a good conductor at the boundary. In the dielectric

waveguide, this is accomplished by total internal reflection,

which is gotten by having the central dielectric made of a

material of higher index of refraction than the surrounding

dielectric. The two regions will henceforth be referred to as

the core and cladding.
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In a metallic guide there are two sets of solutions,

the transverse electric and transverse magnetic modes. In the

dielectric guide all but the cylindrically symmetric modes,

TEom and TMom, are hybrid, i.e. they have both electric and

magnetic z-components. In general, one would expect two

sets of such hybrid modes, because the boundary conditions

give a characteristic equation which is quadratic in the

Bessel functions describing the field in the central dielectric.

Beam et al6 gave the two sets for n=1, and Abele7 arrived at

the two sets by a graphical solution of the characteristic

equation.

Until recently the main concern has been with the

three lowest order modes, HE,,, TE0 1 and TM0 1 . However, with

the increased interest in end-fire antennas and the observations

of waveguide modes in the visible region of the spectrum,8 the

higher order modes assume greater importance.

In this paper th.: two sets of solutions are given,

including cut-offs, field distributions, and conditions far

from cut-off. The designations of the hybrid modes are

considered. Some properties of the propagating modes are

discussed.
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II. BASIC EQUAT:ONS

The cylindrical dielectric waveguide consists of a core

of high dielectric constant E1 and radius a surrounded by a

cladding of lower dielectric constant 162. Both regions are

assumed to be perfect insulators with the free space magnetic

permeability ±. Such a structure can have an infinrte number

I - of modes, but for given values of E E 2 and a. only a

finite number of these are waveguide modes have their fielcs

localized in the vicinity of the core. The other "unbound'

modes would correspond for example to light striking the core

from the side, passing on through the core and emerging fron

the other side.

Choose a cylindrical coordinate systen r, 0, z with

the z-axis lying along the guide axis. A waveguide mode is a

coherent distribution of light, localized in the vicinity of

the core by total internal reflection, and which propagates

down the guide with a well defined phase velocity. That is.

the z and time dependences are given by exp ti(hz-*t),

wiere w is the an :ular frequency and h is the propagation constant

which is determined from the boundary conditions.

Because of the cylindrical symetry, the other components

of the fia1f can be expressed in terms of Ez and Hz
.9 The

z-components of the field satisfy the wave equation in cylindrical

coordinates. The solutions are:
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EZ =An Jn (N 1 r) cos (no + n)exp {i(hz-0t)} ()

Hz = Bn Jn (Ni r) cos (ne + Vn)exp fi(hz-w)) . (2)

The field in the cladding is given by replacing the constants

An and Bnby Cn and Dn, and by replacing the Bessel function

Jn (A1 r) by the modified Hankel function of the first kind

Kn (X2 r). These particular Hankel functions are required in

the cladding, because they are the only cylindrical functions that

vanish sufficiently rapidly as r increases to infinity to describe

a field bound to the central dielectric. With the definition

of the propagation constant k2 = w2e, the N's are defined by

2= k,2 h2 , X22 = h2 - k 2. (3)
'2 2'0

both are real. and 'Ytn are phase factors, which are related

by the boundary conditions.

The transverse components of the field can be expressed

in terms of E and H by

E = i h A[ 1.+ H7-] (4)
r k2-h 2 I r h r

h .

~-L r 0 h arj (5)
h k2 1 Ez + Hz ]

Hr =  k h .(h r JO aH (6)

He = Z _ + i -. (7)
k2-h 2 h ) r r a
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At the boundary r = a, the continuity of the tangential

components of the field give the following four equations for

the constants An* Bn, Cn, Dn. For simplicity ?%la and ?A2a have

been replaced by u and w. The continuity of the tangential components

of E give

An Jn = Cn Kn, (8)

An uT Jn sin (no +fn) + Bn  cos InG +ln) (9)
u

= C Knsin (nG +On)-D VM Kncos(no +.?.n),
w

and from the tangential components of H,

Bn Jn = Dn Kn, (10)

Ank12 _ J ' cos (no +Pn)- Bn si (no-n)
ni n B U2 in (O-~~

=-C n  2 KnI cos (no +,On) + D.. ".hKsn(. +~ (1
n wn 2S n sin (2O +nn (11)

The primes on Jn and Kn refer to differentiation with respect

to thpir arguments, u and w, respectively. Further, define

ni and n2 by

$ I

n, Jn n2 Kn (w)(12)
U Jn(u) w Kn (w)

For the four equations to be consistent, the determinant of the

coefficients must vanish, giving

(n, + n2)(k12 n, + k2 2 n2) - sin(no +Pn) sin(no + n) (13)
n2h2 (1/u2 + 1/w2)2  cn)n Cos(no + r.) cos (no n
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The left side of (13) is independent of angle; therefore, the

phases P and . n must be related such as to make the right

s~de a constant. This will be the case if

jn -Pn = +/2 (14)

Then (13) becomes

(n, + n2 )(k12 nI +k22 n2 ) = n2h2 (!/u2 + 1/w2 )2. (15)

Eq. (15) together with Eqs. (3) determine the value of h.

The quantity u enters (7) both explicitly and as the argument

of nI. However, n, is a rapidly varyi.g oscillatory function of u.

Hence, (15) can be considered roughly as a quadratic equation

in ni . The two sets of solutions are the two sets of hybrid

modes.

From the set of four boundary condition equations,

the relative amounts of Ez and Hz in a hybrid mode can be

found in a straightforward way. The result is

p = L Bn cos(no +-74n) = n(l/u2 + 1/w2 ) (16)

1h An sin(no +fn) nl + n2

The coefficient gw/h in the definition of P has been included

for convenience in later use.

Expressed in terms of P, the field in the core becomes

I

.1
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Ez = Jn (Xlr) Fc,

Er = i [nI - P J n

Ee - [PJnl - nJ

H = h PJn Fs (17)

Hrh 2 J . r

He i  ~ k12 [j I  irJ
k121 2  \1.

PON1 I n k12  Nlr-n Fc.

The prime indicates differentiation with respect to the

argument of the Bessel function and
FcAn cos (n +n) exp { i(hz-t)}

(18)

F=A n sin (nG +,n) exp {i(hz-it))-

- - -
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III. THE CUT-OFF CONDITIMS

The cut-offs for the varicus modes are found by

solving (15) in the limit of w2- o.

Define new quantities c 1 and .2 by

'!2 , (19)

U Jn wKn

By using the Bessel and Hankel function identities, Eqs. (A4) and

(A6) in the appendix, (15) can be rewritten as

[K 12 + K2 2 2 (2 + K 2 + 2 12 -'2 - 2 + n +

[K22 2 ((K12 + K22) 1 _. K] (20

1 is a function of u, but as pointed out earlier, ;i varies

so much more rapidly than u that where u appears explicitly

in (20) it can be considered a constant. The two sets of

cut-off values for different n can be obtained by substituting

for the limit of w2 -0.

Consider first the case of na2. From Eq. (AlO) as

* w2 -0.

2= L/ (n-l)] • (21)

The two sets of roots of (20) are

k
n-l 2+ kc2  (22,It

I
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n k 1 2 + k22  (23)
k12 w

Eq. (23) is equivalent to Jn(u)=O.

The cut-off values from (22) are given by

Schelkunoff.5  Those from (23) were found by Abele9 by a

graphical solution of equation (15). Substituting for! I

in terms of the Bessel functions and using (Al) with n

replaced by (n-l) puts Eq. (22) in a more convenienc form for

small differences in dielectric constant between core and

cladding. The result is

u Jn-2(u) (l -E2=_____ - (n-l) -(24)

Jn-1(u) E 2

For small differences in dielectric constant the cut-offs are given

approximately by Jn-2(u) = 0. For n=2, this gives another set

of modes whose cut-offs are close to the TE and TM modes.

The interesting effects this has on optical waveguide modes are

discussed in a companion article in this journal,

For n=l, from Eq. (A9) in the limit of w2 -po the

I two roots of (20) are

S* k 1 2 + k 2 40.2 10 (25)

k 2 w2

i k2 _ 22 In 2w -0- (26)

k,2 +k2 A
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Both of the above equations have cut-offs given by

Jl (u)=0 (27)

The root of Eq. (27) at u=O corresponds to the well-known

HEll mode which does not have a cut-off.

Eq. (27) specifies two sets of modes whose cut-off

conditions are identical. However, the HEll mode is the first

mode of only one of the sets. This is because 1/u2 in equation

(20) cannot be considered aa slowly varying near u=O. In fact,

1 becomes 2/u2 near u-O and the quadratic term 4 12, drops

out of the equation.

The relative amounts of EZ and HZ in the hybrid

modes can be found by substituting in Eq. (16) the limiting

values of 6 1 andS 2 as w-e-0. The results together with the

cut-off conditions are summarized in Table I.

Let u be the value u assumes at cut-off for the

m'th root of the cut-off condition involving the n'th order

Bessel function. The possible values of un are the roots of

the equations giving the cut-off conditions in Table I. At

cut-off, w-O and h-k2 ; hence, the first of Eqs. (3) becomes

Ulm = 2 jr (a/X) (nl 2 - n2 2) 1 / 2 , (28)

where X is the free space wavelength and n, and n2 are the

indices of refraction of core and cladding, respectively.

The modes which can propagate are those for which

Un are less than 2 17 (a/X) (n 2 - n22) Since ui forms
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an increasing sequence for fixed n and increasing m or for

fixed m and increasing n, the number of allowed modes increases

as the square of the radius a.

IV. CONDITIONS FAR FROM CUT-OFF

The field in a mode far from cut-off can be found in

the same way as that near cut-off. Only now the asymptotic

forms for large w are substituted forC 2 in Eq. (20). Table

II summarizes the conditions far front cut-off.

V. MODE DESIGNATIONS

For cylindrical metallic waveguides the modes are

designated TEnm and TMnm, or in the older literature these

were Hnm and Enm modes, respectively. The transverse electric

mode TEnm can be derived from a single field quantity, the

z-component of the magnetic field, hence the alternative

designation Hnm for this mode.

In the dielectric waveguide only the cylindrically

symmetric n = 0 modes are either transverse electric (TEom)

or transverse magnetic (TMom). The otner modes are hybrid,

i.e. they have non-zero values for both Ez and HZ .

Following Wegner, 10 Beam 6 suggested a scheme for the

designation of the hybrid modes based on the relative
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contributions of Ez and Hz to a transverse component of the field

at some reference point. If Ez makes the larger contribution,

the mode is considered E-like and designated EHnm, etc. This

method of designation is arbitrary, for it does depend on the

particular transverse component of the field chosen, the reference

point, and how far the wavelength is from cut-off. However,

the use of two letters, such as EH and HE, to designate the

hybrid modes is reasonable because it does imply the hybrid

nature of these modes.

It has become common usage in the microwave literature

to refer to the mode without a cut-off as the HE,, mode.

Referring to Table II, it is seen that this mode has a value

of P = -1 far from cut-off. It is proposed that all the modes

with P = -1 be designated HErMn and -the modes with P = +1 be

designated EHnm. The basic physical difference between the HE

and EH modes will be discussed later in the section on field

plots.

The subscripts on PM nm or EHnm refer to the n'th

order and m'th rank, where the rank gives the successive solutions

of the boundary condition equation involving Jn" It is

customary to label these solutions in order starting from m - 1;

this procedure is followed here. Notice that this makes the cut-off

parameters for the HE12 and EHII mode the same, namely th, -t of

J!(u)=O at u=3.832. Table I summarizes the mode designations su qes.- !

here.
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VI. THE TRANSVERSE COMPONENTS OF THE FIELD

By use of Eqs. (Al), (A2) and (17) the field in the

core can be written as

Ez = Jn (Nir) F.,

Er = i h 1 n-1 2 J+l F_,

E h (29)~JE8 - i 'Jn-1 2 + Ps,(29)

_ h

Hr = -i k 2 [i - Ph2/k 2  I + Ph2/kl2
r - - 2 Jn-- Jn+l Fs

9PAI 2 n-i - 2 1 n+1 Fc

The quantities Fc and Fs continue to be given by Eqs. (18).

For small differences in refractive index between the core

and cladding k12/k22 '- 1, h2/k12 ' 1 and from Tables I and II

P = + 1. The value P = +1 is for the EH modes and P = -1 goes

with the HE modes. It is seen from Eqs. (29) that the transvers

components of the field depend on r through J for the EH
n+m

modes and have a dependence of Jn-' for the iE m~odes.
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VII. ENERGY FLOW

The energy flow per unit area as a function of r and 0

is given by the real part of the complex Poynting vector,

= 1/2 E x H, where H is the complex conjugate of H.

Only the z-component of S* is real and the power per unit area

is given by

Sz = 1/2 (Er HO - Eg Hr). (30)

Substitution from Eqs. (29) gives after some simplification

k 2 [ (-P) (l-Ph 2/k 2
1  2

-- An_____ in-i

+ (1+P) (l+pn 2 /k 1 2) jn 2 (31)

4

- 2 Jr- Jn+lcos2 (n+ Pn)

For small index differences P = + 1 and the term containing

0 drops out. The energy flow is then nearly circularly

symmetrical with a radial dependence of

Sz 0C One1 2 (32)

The upper sign n-1 is for the HE modes and the lower for EK.

4

I

$

i
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VIII. CHARACTERISTICS OF PROPAGATING MODES

For a waveguide mode X and }'2 must both be real.

Hence from Eq. (3)

k2 2 4 h2 e_ k12. (33)

k guide wavelength Ng, phase velocity Vph and effective

refractive index nef f can be defined for a mode at the free

space wavelength N by

W/h = vph = )g /neff (34)

whe'e c is the velocity of light in v=Pcuum. With (34) and the

definition of the k's, Eq. (33) beccnmss

c/nl v-lS cp c/n2 35)

That is, the phase velocity is interme-Laze between t:he

velocities of propagation in bulk ra-- "al of which the core and

the cladding are made. At c-ut--off h-k 2 or

Vph = c/n2 . (36)

Par from cut-off the other equality in (35) holds.

Eq. (36) is the physical cptics analogue of the

geometrical optics condition that prcpagation in the light pipe

I occurs when the angle of incidence on the boundary exceeds the

I critical angle for total internal reflection. Consider a plane

wave incident on the side of the core as shovrn -n figure 1.

I The wave normal is in the direction p, and S, and S2 are two

-
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equiphase surfaces separated by N!nl, the wavelength in a

homogeneous medium of refractive index n1 . The apparent

wavelength along the guide, Ag, is given by

7%g = ?/nI sin o< . (37)

But Snell's law gives for the critical angle for total internal

reflection, n2 = n, sin CX Hence at cut-off 37) becomes

Ng = N/n2, or vph = c/n2 , which is the same as Eq. (36).

Fig. 2 gives the very useful plot of freqdency versus the

inverse of the guide wavelength, that is c/N vs. i/Xg for the

propagating modes. To obtain these curves, Eqs. (3) and (15)

are solved for h as a function of N and the parameters of the

guide for each propagating mode. The mode lines shown in Fig. 2

are only schematic. A number of machine computations of these

lines are available in the literature for the HE11 and TE01

modes, 6,11

Propagation in the modes is such as to be confined to the

region between the lines whose slopes are c/n and c/n2 .

Each mode as a function of wavelength is represented by a line which

approaches the c/n1 line far from cut-off and terminates at the

c/n2 line at cut-off. All the modes which have cut-offs

terminate sharply at the c/n2 line, but the HEi1 mode, which

does not have a cut-c.f, approaches the c/n2 line slr.1;ly, finally

merging with it at the origin. The number of modes increases

as the square of the frequency.
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The significance of a mode line can best be understood

by a specific example. Consider the TE01 mode excited at the

frequency V1. Then 1/N g is the coordinate of the intersection

of the TE0 1 line with the ordinate ))'. The slope of the line

connecting this point with the origin is C/nol1 00 , where nOl(X)

is the effective index of refraction of the TEo1 mode excited

at the free space wavelength ?. c/n (VA) is the phase velocity,

whereas the slope of the mode curve at V' is the group velocity.

I

I

.1

ifQ
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IX. FIELD PLOTS

The field distribution can be given in the usual way

by field lines in which the direction of the line at a point

gives the direction of the field and the density of lines its

magnitude. Only the field in the core will be considered. The

field in the cladding can be inferred from the boundary conditions

which require that the tangential components of E and H, and the

normal components of GE and H be continuous. Since the field

components in the cladding depend on modified Hankel function

which monotonously go to zero with increasing r, the density

of field smoothly decreases with an increase in the radial

coordinate.

In Fig. 3 is shown the field distribution in the core

for the TE02 mode far from cut-off. The field components from

which Fig. 3 was sketched are given in Eqs. (17) or (29).

The distribution is the instantaneous values in a transverse

plane and in two longitudinal half planes of length Ng/2 in

the z-direction. In the transverse plane the magnetic field lines

shown do not form closed curves; this is done to imply that these

field lines close by going down the z-direction. The dots and

crosses in the longitudinal planes specified that the electric

field is perpendicular to these planes. The field line enters

the plane at a dot and leaves it at a cross.
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The z-component of the magnetic field varies as

J0(u r/a). From Table II far from cut-off u is the second zero

of J1 (u) 0 or u = 7.02, and at cut-off u is the second zero

of J0 (u) = 0 or u = 5.52. Hence, as the cut-off wavelength

is approached the field distribution in the core readjusts itself

so as to make the boundary of the core shift from the value

u = 7.02 shown in Fig. 3 to the value u = 5.52.

For the TE01 mode the boundary r = a is at ± = 3.83

far from cut-off and at = 2.41 at cut-off. The field

distribution for the TM02 mode is obtained from Fig. 3 simply

by interchanging the roles of E and H.

Since the Poynting vector is a function of the

vector product of the transverse components of the field, it is

clear from Fig. 3 that an image of the intensity distribution

in the TE02 or TM0 2 modes should consist of two concentric

circles.

It is interesting to compare the field distribution

for the TEOm and TMom modes with that obtained for the metallic

waveguide. 12 In the later case the electric field is normal

to the metallic boundary surrounding the core and the magnetic

field is parallel to it. Hence, the metallic TEom modes

look like the dielectric TEom far from cut-off, but the metallic

TMom modes have the field distrubition of the dielectric

TM modes at cut-off.

Io



-20-

For the hybrid modes (n 1) the field distribution

simplifies considerably for the case of a small index difference

between the core and the cladding. From Eq. (29) for the z-components

given by

(Ez, H) < Jn (ur/a) cos ne, (38)
z n

the transverse components of the electric field are

Er O< (+1) Jn+l (u r/al Cos no, (39)

Ee Cr Jn+l (u r/a) sin no. (40)

The proportionality constants are the same for Er and E0. The

plus sign is for the EHnm mcdes and the minus sign for the

HEn modes.

A given field line will be contained on a surface

whose projection in the transverse r, G plane is the solution of

d = E (41)

rdG ~

For a small difference in refractive indices between the core

and the cladding Eqs. (39) and (40) apply, and the right side

of (41) is a function of 0 only. The result is

dr + cos n 9 %'42)
rd9 - sin n 9.

The above can be integrated to give

r - C (sin n G) +1/n, (43)

JI



-21-

where C is an integration constant. The plus sign in the

exponent is for the EH;Lm modes and the minus sign for the

HEnm modes. By assigning different values to C a family of

curves is obtained which gives the electric field in a transverse

plane. The magnetic field can be found in the same way;

it is the same as for the electric field but with the pattern

rotated by fl/(2n).

For the HEl. modes Eq. (43) becDmes

r sin 0 = constant.

This is the equation for a set of straight lines parallel to the

x-axis. Fig. 4 shows the field dist.:ibutLon for the HE1 2

mode. Far from cut-off the boundary of the core is at the second

root of J o(u) = 0 or u = 5.52 and at cut-off the boundary is at

the zero of J 1 (u) = 0 at u = 3.83. Tor the HE,, mode the

boundary shifts from u = 2.41 fo_ short wavelenjgths to u = 0

with increasing wavelength.

From Eq. (43) the electric field lines in a transverse

plane for the EH mode satisfy

r = C sin 9, (45)

or

x2 + (y C/2) 2 
-2/4. (46"

By assigning different values to C, Eq. (46) gives a set of

circles that are all tangent to the x-axis at The origin. Fig. 5

gives the field plot for the EHI mode. Far from cut-off the
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boundary of the core is at the first zero of J2 (u) = 0

or u = 5.14 and at cut-off the boundary is at the first zero

of Jl(u) = 0 at u = 3.83

For the HE21 mode the electric field in a transverse

plane is

r = C (sin 29) "1/ 2  (47)

or

xy = Constant. (48)

For various values of the constant Eq. (48) gives a set of

hyperbolas. The field lines are shown in Fig. 6. Far from

cut-off the boundary of the core is at the first root of

Jl(u) = 0 or u = 3.83 and at cut-off the boundary is at a value of

u somewhat larger than the first root of Jo'u) = 0 or u = 2.41.

To find a more precise value of u at cut-off for the

case of a small index difference the left side of Eq. (24 can be

expanded about the zero of Jn-2(u) = 0. To the first order

terms the result is

+ ni n 2  2
-n-l n

Un n-2, m 2(49 )
Un-2,m n22

The prime on um indicates that it is the cut-off parameter

for the HEnm modes obtained from Eq. (24).

Where the field lines in Fig. 6 do not form closed

curves but end in a plane, the field lines close by moving

perpendicular to the indicated plane. The lower portion of

Fig. 6 shows the closed contours for the electric field in a

hyperbolic section bb'.
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The field plots for the higher order modes are

obtained in the same way as those above.

The EHnm and HEnm modes both have roughly the same

r-dependences for (Ez, Hz ), mainly Jn(ur/a) . But the transverse

components depend on Jn+l(ur/a) for the EH modes and on

Jnl(ur/a) for the HE modes. This means that the field lines

which are parallel to the guide axis at z=O tend to form closed

contours by going to larger radii in the region 0 <I z 1< Ag/ 4

for the EH modes, but on the whole close by going to smaller

radii for the HE modes. Hence, for the El modes the peaks in

the Poynting fluxare located further from the center of theI guide than the peaks in E and H ; the reverse is the case for

the HE modes.
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Table I. Summary of Cut-Off Conditions

The Bessel function of order n and argument u is

given by Jn(u), and' 1 and 6 2 are the dielectric constants

for core and cladding. P gives the relative amount of

Hz to Ez in a mode (see text for exact definition).

First Set of Solutions Second Set of Solutions

|IP Suggested P k Suggested

Cut-off at mode C ut-off Jt a+ Mode
Condition Cut-off Designation Condition Cut-off Designation

n-0 Jo(u)=O 0 TMom Jo(u)=O 0 TEom

m=l,2 • m=!, 2---

n-i J1 (u)=0 -1 HEm kl 2  EHM
m=-,2 . .! _2m 1, .

J-2

UJn_2 (u)

--ln-nm "l-EH2

2
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Table II. Summary of Conditions Far from Cut-Off.

First Solutions Second Solutions

u p u p

n=O Jl(u)=0 0 (TM) J 1 (u)=0 00 (TE)

ntl Jn-i(u)=O -1 (HE) Jn+!(u)=O +1 (EH)

I

I!
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APPENDIX: PROPERTIES OF BESSEL AND HANKEL FUNCTIONS

The argument of the Bessel functions is u and of the

modified Hankel functions w.

n n -= 1

Su 2 (Jn- 1 + Jn+l)

J n = I (Jn-l. - Jn+l ) ,  (A2)

2

-n (-l)n Jr.

From the first two equations above

Jn' -Jn-1 - n (A4)
u J--n u Jn u2

For w real the modified Hankel functions K (w) ire defined byn

Kn(W) 7[ in+l ()
K(w) M- i n+ n (iw), (AS)

2

(1)
where H (iw) are the Hankel functions of the first kind. Then

equation corresponding to (A4) is

Kn ' Kn_ + n (A6)

W Kn w Kn

Ii
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For small w,

Ko(w) = In (2/w), (A7)

K (w) = (n-i): 2 n -1 n - 2 for na _ 1, (A8)n

whereoy is Euler's constant and equal to 1.781. Still in the

limit of w small,

K = in (2/ w) , (A9)

w K1

Kn- 1 = [2(n-l -i for n 2. (AlO)

w Kn

The asymptotic expressions for large w are

K (w)= (7T/2w)1 / 2  exp -w? (All)n )J

n-l 1 (A12)

wKn w
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CAPTIONS FOR FIGURES

Fig. 1 Construction to show the equivalence of the waveguide

c-ndition that at cut-off vph = c/n2 witb the

geometrical optics conditions that propagation occurs

only if the angle of incidence of the wave on the

fiber wall exceeds the criticl angle for total

internal reflection. The wave noemnal is given by p,

S1 and S2 are two equiphase surfaces separated by

\/nl, and 'Xg is the guide wavelength.

Fig. 2 Typical curves of the frequencyV versus 1/g for mode

propagation in a dielectric waveguide. Each mode is

represented by a line which is confined to the region

between the lines whose slopes are c/n2 and c/nI .

At the frequency ' the TE0 1 mode has a guide

wavelength of N\g', phase velocity Vph and group

velocity vgroup.

Fig. 3 Field plot in the core for the TE02 mode far from cut-

off and for a small difference in indices of

refraction of the core and cladding.

Fig. 4 Field plot in the core for the HE12 mode far from cut-

off and for a small difference in indices of refraction

of the core arid cladding.
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Fig. 5 Field plot in the core for the EHII mode far from

cut-off and for a small difference in indices of

refraction of the core and cladding.

Fig. 6 Field plot in the core for the HE21 mode far from
Icut-off and for a small difference in indices of

refraction of the core and cladding.

-



-30-

REFERENCES

1. Lord Rayleigh, Phil. Mag., 43, 125 (1897).

2. D. Hondros and P. Debye, Ann. Physik, 32, 465 (1910).

3. 0. Schriever, Ann. Physik, 63, 645 (1920).

4. J. R. Corson, S.P. Mead, and S. A. Schelkunoff,
Bell System Tech. J., 15, 310 (1936).

5. S. A. ScheJlkunoff, "IElectromagneti4 Waves"
(D. Van Nostrand, Inc., New York-I, 1943), p. 425.

6. R. E. Beam,1 24. M. Astrahan, 14. C. Jakes, H. M. Wachowski,
and W. L. Firestone, Northwestern University Report
ATI 94929, Chap. V (1949).

7. M. Abele, Nuovo Cimento C,274 (1949).

8. E. Snitzer and J. W. Hicks, J. Opt. Soc. Am., 49, 1128 (1959);

H. Osterberg, E. Snitzer, M. Polanyi, R. iiilberg and

J. W. Hicks, Ibid.

9. J. A. Stratton, "Electromagnetic 'theory" (McGraw-Hill Book

Co., Inc., New York, 1941.), Chap. V.

10. H. Wegner, Air Material Command Miccofilm ZWV/FB/RE/2018,
R 8117F831.

11. S. P. Schlesinger and D. D. King, Trans. of the I.R.E.,
M.T.T. 6, 291 (1958).

12. J. F. Reintzes and G. T. Coate, "Principles of Radar"
(McGraw-Hill Book Co., Inc. New York, 1952)
3rd. ed., Chap. 8, p. 609.



4~LL

CM- -ct

~KZc



TO

HE

C/A / MD

I
I

/Ng

FIG.2



I\ \JC
I _________ o_

0

-~L J



C\J CY)-

+

Li-

Lii

('TT



Cci 
_i7

LL

dO L
El



12

H /

HYPERBOLIC SECTION b-b'

bI

FIG. 6



I

DISTRIBUTION LIST

Distribution for this Scientific Report is in

accordance with the Master Distribution List, List S-S,

for the Antenna Laboratory, Electronics Research

Directorate, AFCRL, Office of Aerospace Research,

U. S. Air Force, Bedford, Massachusetts, which was extant

in August 1961.

* .
I

1

p


